
Very Compact FPGA Implementation of the

AES Algorithm

Pawe l Chodowiec and Kris Gaj

George Mason University, MS1G5, 4400 University Drive, Fairfax, VA 22030, USA
{pchodow1, kgaj}@gmu.edu

http://ece.gmu.edu/crypto-text.htm

Abstract. In this paper a compact FPGA architecture for the AES al-
gorithm with 128-bit key targeted for low-cost embedded applications is
presented. Encryption, decryption and key schedule are all implemented
using small resources of only 222 Slices and 3 Block RAMs. This im-
plementation easily fits in a low-cost Xilinx Spartan II XC2S30 FPGA.
This implementation can encrypt and decrypt data streams of 150 Mbps,
which satisfies the needs of most embedded applications, including wire-
less communication. Specific features of Spartan II FPGAs enabling com-
pact logic implementation are explored, and a new way of implementing
MixColumns and InvMixColumns transformations using shared logic re-
sources is presented.

1 Introduction

The National Institute of Standards and Technology (NIST) selected the Rijn-
dael algorithm as the new Advanced Encryption Standard (AES) [29] in 2001.
Numerous FPGA [2] [15] [16] [17] [18] [19] [20] [24] [25] [26] [27] [28] and ASIC
[4] [6] [7] [8] [10] [11] implementations of the AES were previously proposed and
evaluated. To date, most implementations feature high speeds and high costs
suitable for high-end applications only.

The need for secure electronic data exchange will become increasingly more
important. Therefore, the AES must be extended to low-end customer products,
such as PDAs, wireless devices, and many other embedded applications. In order
to achieve this goal, the AES implementations must become very inexpensive.

Most of the low-end applications do not require high encryption speeds. Cur-
rent wireless networks achieve speeds up to 60 Mbps. Implementing security
protocols, even for those low network speeds, significantly increases the require-
ments for computational power. For example, the processing power requirements
for AES encryption at the speed of 10 Mbps are at the level of 206.3 MIPS [12].
In contrast, a state-of-the-art handset processor is capable of delivering approx-
imately 150 MIPS at 133 MHz, and 235 MIPS at 206 MHz.

This paper attempts to create a bridge between performance and cost require-
ments of the embedded applications. As a result, a low-cost AES implementation
for FPGA devices, capable of supporting most of the embedded applications, was
developed and evaluated.

2 Related Work

Early AES designs were mostly straightforward implementations of various loop
unrolled and pipelined architectures [24] [25] [26] [27] [28] with limited number
of architectural optimizations, which resulted in poor resource utilization. For
example, AES 8x8 S-boxes were implemented on LUTs as huge tables left for
synthesizers to optimize.

Later FPGA implementations demonstrate better utilization of FPGA re-
sources. Several architectures using dedicated on-chip memories implementing
S-boxes and T-boxes were developed [15] [17] [18] [19] [20].

Recent research focused on fast pipelined implementations in both FPGA [2]
[3] [14] [18] [19] [20] and ASIC [4] [6] [7] [11] worlds. Unfortunately, most of those
implementations are too costly for practical applications.

The first significant step in compacting the AES implementation was made
when V. Rijmen proposed an AES S-box implementation based on composite
fields [31]. A similar solution was proposed by J. Wolkerstorfer [13]. Rijmen’s idea
has already been implementated in FPGA [2], and in ASICs [4] [6] [8]. S. Morioka
et al. [10] went even farther and proposed a low-power compact S-box design
suited for ASIC designs.

3 Architecture of the Compact Implementation

We began the design of the compact architecture by analyzing the basic archi-
tecture, as introduced in [26]. The basic architecture unrolls only one full cipher
round, and iteratively loops data through this round until the entire encryption
or decryption transformation is completed. Only one block of data is processed
at a time making it equally suited for feedback and non-feedback modes of op-
eration.

The structure of the AES round for encryption is shown in Fig. 1. The decryp-
tion round looks very similar, except it employs inverted operations in the fol-
lowing order: InvShiftRows , InvSubBytes, AddRoundKey and InvMixColumns .
The SubBytes and ShiftRows operations in Fig. 1 are reordered compared to the
cipher round depicted in the standard [29]. Their order is not significant because
SubBytes operates on single bytes, and ShiftRows reorders bytes without altering
them. This feature was used in our implementation.

The AES round shown in Fig. 1 reveals a great deal of parallelism. The
data bytes are ordered from the most significant (byte 0) to the least significant
(byte F) assuming big-endian representation. The round is composed of 16 8-bit
S-boxes computing SubBytes, and four 32-bit MixColumns operations, working
independent of each other. The only operation that spans throughout the entire
128-bit block is ShiftRows.

It is possible to implement only four SubBytes and one MixColumns in order
to compact the AES implementation. Ideally, the resources should be cut by
four, while execution of one round should take four clock cycles. This approach

ShiftRows

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

AddRoundKey� �
� �
� �

SubBytes

MixColumns

0 1 2 3 4 5 6 7 8 9 A B C D E F Data Bytes

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

�
�
�

� �
� �
� �

�
�
�

Fig. 1. Operations within AES encryption round

would result in approximately four times lower performance than for the basic
architecture.

Cutting the resources by 75% may not appear easy. The folded round, as we
call the modified round, still must transform 128 bits, and storage for all 128 bits
of the data block must exist. Another complication is related to the implemen-
tation of the ShiftRows operation. The data bytes processed in the AES round
cannot return to the same positions in the block register because it would not
execute the ShiftRows operation. On the other hand, those same bytes cannot
be placed into locations indicated by ShiftRows because those locations are oc-
cupied by other bytes that have not yet been processed. Therefore, additional
bits of intermediate results must be stored, and more logic resources are needed.

One of the possible architectures for a folded implementation is shown in
Fig. 2a. This architecture requires one 128-bit register, one 96-bit register and
one 32-bit wide 4-to-1 multiplexer on top of the main cipher operations. The
multiplexer becomes even bigger when both ShiftRows and InvShiftRows are
implemented using same logic resources. The execution of one round takes four
clock cycles. We believe that this, or very similar architecture, was implemented
by A. Satoh et al. [23], but we cannot be sure since the authors do not provide
enough detail. Their results show that the 4-cycle round takes 50% of the re-
sources required by the 1-cycle round, and yields four times lower throughput.

Another possible architecture is shown in Fig. 2b. The 96-bit register is im-
plemented as three 32-bit registers inserted into round operations creating a
pipeline. In the case of FPGAs, those 32-bit registers will most likely be placed
in the same Slices as logic operations yielding better resource utilization. The
critical path is also shortened which permits the execution at a higher clock rate;
however, the execution of the entire round requires seven, instead of four, clock
cycles. We believe that this architecture was implemented by S. McMillan et al.
[21], but again, we cannot be certain since the authors did not provide enough
detail. S. McMillan et al. reported only slight difference of 48 Slices (16%), and
large difference of 24 Block RAMs (75%), between 1-round unrolled and folded
architecture.

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

� �� �� �� �� �� �� �� �

SubBytes

MixColumns +
AddRoundKey

32
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

� �� �� �� �� �� �� �� �� �� �� �

SubBytes

MixColumns +
AddRoundKey

32

ShiftRows
ShiftRows

a) b)

Fig. 2. Folded architecture. a) by A. Satoh et al. [23]; b) by S. McMillan et al. [21]

3.1 Implementation of a Folded Register

The two folded architectures described above are very straightforward and re-
sulted in small logic savings. In order to create a folded architecture with better
parameters, we decided to explore fine details of FPGA devices. We arranged
data bytes into rows as shown in Fig. 3. This data arrangement is consistent
with a state introduced in [30]. The following exercise can now be executed in
steps:

1. Read input bytes: 0, 5, A, F; execute SubBytes, MixColumns and AddRound-

Key on them; write results to the output at locations: 0, 1, 2, 3. This step
is highlighted in the Fig. 3.

2. Repeat above operations for input bytes: 4, 9, E, 3; write results at output
locations: 4, 5, 6, 7.

3. Repeat above operations for bytes: 8, D, 2, 7; write results at locations: 8,
9, A, B.

4. Repeat above operations for bytes: C, 1, 6, B; write results at locations: C,
D, E, F. Output now becomes input for the next step.

In those four steps the entire AES round was executed including ShiftRows

operation. At each step only one byte was read from each input row, and one
byte was written to each output row. A similar exercise with identical conclu-
sions can be executed for decryption transformation. Each row can be viewed
as an addressable 8-bit wide memory. The correct execution of ShiftRows and
InvShiftRows is now resolved to the proper addressing of each of the memories at
the consecutive clock cycles. At the fourth clock cycle output memories become
input memories and vice versa.

Dual-Port RAM Based Implementation Each CLB Slice in Spartan II
FPGA contains two look-up tables (LUT), which are the primary resources for
logic implementation. Typically LUTs are configured as small 16x1 ROM tables

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

In
pu

t m
em

or
y

Add
Rou

nd
Key

Sub
Byte

s

M
ixC

olu
m

ns

� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �
� � �

Out
pu

t m
em

or
y

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

Fig. 3. Data arrangement in the folded architecture. Data bytes involved in the first
step of calculation are highlighted

implementing logic functions of up to four inputs; however, other configura-
tions are also possible. Two LUTs within the same Slice can implement a 16x1
Dual-Port RAM. An 8-bit wide Dual-Port RAM can be implemented using eight
CLB Slices. This memory can be divided into two banks; each addressed by a
different port. One port is used for reading data from the memory, while the
other one for writes results back to the same memory. The switching between
banks can be achieved by fliping one address bit in both ports every fourth clock
cycle.

The Dual-Port RAM based solution has major advantages over solutions
presented in Fig. 2:

– The logic resources required for storing intermediate results are far smaller.
– The multiplexer used before for ShiftRows and InvShiftRows is no longer

needed.
– The complicated routing resulting from implementation of ShiftRows and

InvShiftRows is avoided, yielding better performance.

Shift Register Based Implementation A better solution may result from
the following observation: all bytes from the output of AddRoundKey are writ-
ten into consecutive locations in the output memory in consecutive clock cycles.
Therefore, we could use a simple shift-register to shift computed data in without
generating any addresses. Fortunately, LUTs can also be configured as 16-bit
shift registers with variable taps, as shown in Fig. 4. Four Slices can implement
an 8-bit wide, 16-bit long shift register. The input of the shift register is used
for shifting results in while the output, selected dynamically by changing tap
address, is used for reading data out. This solution encompasses all of the ad-

vantages of the Dual-Port RAM based solution, and requires less than a half of
the logic resources than the Dual-Port RAM.

4

input

clock
address

output

LUT

D Q D Q D Q D Q
1

1

Fig. 4. Look-Up Table (LUT) configured as a shift register

3.2 Implementation of the SubBytes and InvSubBytes

Various area efficient implementations of AES S-boxes were proposed in [2] [4]
[6] [8] [10] [13] [22] [23] [31]. All of those implementations are based on an
idea of transforming the original GF (28) field into a composite of smaller fields
GF

(

(24)2
)

. It is a very attractive solution especially from the perspective of
an ASIC because its implementation occupies a smaller area than a ROM. In
the case of FPGAs, S-boxes can be mapped into dedicated Block RAMs treated
as ROMs, or into LUTs. The latter approach could utilize the idea of compos-
ite fields. We decided to keep a good balance between utilization of LUTs and
Block RAMs for the entire design, and implemented our S-boxes on dedicated
Block RAMs.

Each Block RAM represents a dual-port memory of 4096 bits. Each port can
be independently configured for different width and depth [34]. We selected a
512x8 configuration for each port, which provides access to the same memory
space in the same way from both ports. A single SubBytes or InvSubBytes im-
plementation requires a 256x8 ROM. A Block RAM has enough space to imple-
ment both SubBytes and InvSubBytes, as shown in Fig. 5. Each port has access
to the entire memory space, and can perform a SubBytes or InvSubBytes trans-
formation independently of each other. The folded architecture requires only
2 Block RAMs to implement four SubBytes and four InvSubBytes operations all
together.

The Block RAM is a fully synchronous memory. Reading from it requires
supplying the address one clock cycle before the data appears at the output.
This feature can be viewed as a pipeline stage introducing a delay of one clock
cycle. Execution of the entire round in such a circuit would take five clock cycles;
however, a simple modification can be applied to maintain the execution rate at
the level of four clock cycles per round. The trick is based on the fact that the
folded register, described in section 3.1, does not transform data bytes in any

WEA

ENA

RSTA

CLKA

ADDRA[8: 0]

DIA[7 : 0]

DOA[7 : 0]

WEB

ENB

RSTB

CLKB

ADDRB[8 : 0]

DIB[7 : 0]

DOB[7 : 0]

Address space
0H

FFH

100H

1FFH

SubBytes

InvSubBytes

Fig. 5. Block RAM based implementation of SubBytes and InvSubBytes

other way than just reordering them. Therefore, this stage can be safely skipped
if necessary. It apperars that forwarding of only one byte from the input to the
folded register to the input of S-boxes is sufficient to maintain the execution rate
of four clock cycles per round. Unfortunately, different bytes are forwarded in
the case of encryption and in the case of decryption, as shown in Fig. 7.

3.3 Implementation of the MixColumns and InvMixColumns

The 32-bit input to the MixColumns transformation is represented as a polyno-
mial of the form a(x) = a3x

3 +a2x
2 +a1x+a0, with coefficients in GF (28). The

coefficients of a(x) are also polynomials of the form b(x) = b7x
7 + b6x

6 + b5x
5 +

b4x
4 + b3x

3 + b2x
2 + b1x + b0, with their own coefficients in GF (2).

The MixColumns multiplies the input polynomial by a constant polynomial

c(x) = {03}x3 + {01}x2 + {01}x + {02} (1)

modulo x4 + 1. The coefficients in GF (28) are multiplied modulo x8 + x4 + x3 +
x + 1. The InvMixColumns multiplies the input polynomial by another constant
polynomial:

d(x) = c−1(x) = {0b}x3 + {0d}x2 + {09}x + {0e} (2)

The implementation of the MixColumns is very simple because the coeffi-
cients of c(x) are small. On the other hand, the InvMixColumns is far more
complex and occupies larger area.

A. Satoh et al. [23] proposed an implementation based on the following idea:

d(x) = c(x) + e(x) + f(x) (3)

where
e(x) = {08}x3 + {08}x2 + {08}x + {08} (4)

f(x) = {04}x2 + {04} (5)

This implementation yields logic optimizations since InvMixColumns shares logic
resources with MixColumns.

We propose a different method for exploring resource sharing. Our imple-
mentation is derived as follows:

c(x) • d(x) = {01} (6)

If we multiply both sides of the equation (6) by d(x) we obtain:

c(x) • d2(x) = d(x) (7)

where

d2(x) = {04}x2 + {05} (8)

Note that two of the coefficients of the d2(x) are equal to {00}.

The MixColumns and InvMixColumns can be implemented using shared logic
resources as shown in Fig. 6.

c(x) d2(x) InvMixColumns

MixColumns

Fig. 6. Implementation of MixColumns and InvMixColumns

The multiplication by {04} and {05} lead to following equations:

b(x) • {04} = b5x
7 + b4x

6 + (b7 + b3)x5 + (b7 + b6 + b2)x4+

+(b6 + b1)x3 + (b7 + b0)x2 + (b7 + b6)x + b6 (9)

b(x) • {05} = (b7 + b5)x7 + (b6 + b4)x6 + (b7 + b5 + b3)x5 + (b7 + b6 + b4 + b2)x4+

+(b6 + b3 + b1)x3 + (b7 + b2 + b0)x2 + (b7 + b6 + b1)x + (b6 + b0) (10)

Their implementation appears area efficient since 4-input XOR gates are the
widest gates involved in computations, and they get efficiently implemented in
4-input LUTs of the FPGA.

At the time this paper was written we learned that this technique was first
discovered and proposed for software implementations by P. Barreto [5]. V. Fis-
cher and F. Gramain were the first to apply it in hardware [1].

3.4 Encryption/Decryption Unit

Our circuit is capable of performing encryption and decryption. The AES en-
cryption and decryption rounds substantially differ from the point of view of
hardware implementations. One of the inconveniences arises from the fact that
the AddRoundKey is executed after MixColumns in the case of encryption, and
before InvMixColumns in the case of decryption. Therefore, a switching logic
is required to select appropriate data paths, which affects the performance, as
shown in Fig. 7.

d2(x)

Input

Folded
register

SubBytes c(x)

Output
Subkey Subkeyforwarding

Fig. 7. Implementation of the encryption/decryption unit

It is possible to reorder the InvMixColumns and AddRoundKey and avoid
some of the switching. In this case, the key schedule would need to perform
additional InvMixColumns transformation on most of the subkeys. The InvMix-

Columns requires much more area than the switching logic. Our implementation
delivers sufficient performance with the switching logic in place, therefore we im-
plemented the architecture shown in Fig. 7.

3.5 Implementation of the Key Schedule

The key schedule is typically implemented using one of the two methods: com-
puting keys on-the-fly for every block of encrypted data, or precomputing them
in advance and storing. The computation of keys on-the-fly has an obvious ad-
vantage of changing keys fast with low or no delay. This performance comes for
a price of increased power consumption as the key schedule computes over and
over again for each data block.

In the case of the AES it is easy to perform key schedule transformations in
the forward direction, and this is the order the round keys are applied in the case
of encryption. In the case of decryption round keys are applied in the reversed
order. The key schedule could compute round keys in the backward direction, but
it is possible only by starting from the last key, not the main key. Unfortunately,
the last key can be obtained from the main key only by computing the entire
key schedule in the forward direction first. For this reason, the key schedule
computing keys on-the-fly completely looses its advantage when decryption is
performed.

Our AES implementation is designed to perform encryption and decryption.
Since we did not see any advantage in computing round keys on-the-fly, we
selected to implement the key schedule that precomputes all round keys. The
implementation of the key schedule is shown in Fig. 8. It computes 32-bits of
the key material per clock cycle, therefore, full key schedule execution takes 44
clock cycles. The computed round keys are stored in a single Block RAM.

rot

SubBytes

Rcon 3-deep
shift

register

input output

Fig. 8. Implementation of the key schedule

The key schedule uses SubBytes operation that is identical to the one used
in the encryption circuit. Since key schedule does not work simultaneously with
the encryption unit, it is possible to time share S-boxes between both circuits.
This approach saves two Block RAMs at the expense of additional switching
logic, and degraded performance. The performance is affected by the presence
of the switching logic in the critical path, and by slightly more complicated
floorplanning and routhing, as encryption/decryption and key schedule units
are no longer separated. We implemented the switching logic using tri-state
buffers in order to minimize its influence on the overall performance; however,
this solution may not be the most desired for various reliability and testability
related reasons. In the case when tri-state buffers are not allowed in the design,
a multiplexer should be used for switching.

4 Targeted Device, Synthesis and Implementation

Results

The goal for this design was to create a low-cost implementation of AES in the
FPGA targeted for real life applications. Much of the previous research targets
state-of-the-art technologies forgetting that the individual cost of those devices
ranges in hundreds of US dollars. We shifted our attention to older technologies
and smaller devices. Xilinx Inc. produces two low-cost families of devices called
Spartan II, and Spartan IIE. Pricing for Spartan II FPGAs starts from less than
$10 per unit [35].

Spartan II FPGAs are manufactured in 0.22µm CMOS process. Their archi-
tecture is derived from a bigger family of Virtex devices. Spartan IIE are based
on a newer VirtexE family, and are manufactured in 0.18µm CMOS process. The
smallest device from the Spartan IIE family was too large for our needs. The
device we selected for our implementation is Spartan II XC2S30; second smallest
in its family.

The synthesis of our design was done using Synplify Pro 7.2 from Synplicity.
We set the constraints for target clock frequency to 60MHz, fanout guide to 100,
and enabled resourse sharing. We performed synthesis for speed grades -5 and
-6.

The mapping, placing and routing was done using Xilinx ISE 5.2i package.
Mapper optimized circuit for area, and router worked with effort level 5.

The results are given in the Table 1. The maximum frequencies come from
static timing analysis only. The performance is nearly equally affected by logic
and routing. The routing vs. logic delays ratio in the critical path is 54/46. Better
results could be demonstrated with manual floorplanning.

Table 1. Implementation results

Device Area Max. clock Throughput
CLB Slices Block RAMs frequency [MHz] [Mbps]

XC2S30-5 222 3 50 139
XC2S30-6 222 3 60 166

5 Comparison with Other Designs

Despite our intensive search we encountered suprisingly few compact implemen-
tations of the AES algorithm in FPGAs. There exist commercial compact cores
from Amphion [32] and Helion [33] companies. Both companies provide compact
cores in encryption or decryption version only, and a 128-bit key schedule. We
also encountered a JBits implementation by S. McMillan et al. [21]. Their imple-
mentation uses JBits to tailor the bitstream for particular key, and encryption
or decryption operation. Therefore, encryption and decryption are never simul-
taneously present in the circuit, and the key schedule is not implemented in the
hardware.

We also collected information about other existing architectures capable of
encrypting or decrypting data in feedback modes of operation [15] [16] [17] [24]
[26]. We did not take into account any implementations based on T-boxes as
they give greater throughput at the expense of much larger area. The basic fea-
tures of all the implementations are collected in Table 2, and their performance
characteristics in Table 3.

Table 2. Basic features of compared architectures

Device Encryption Decryption Key Schedule
128 192 256

0.22µm

Our Spartan II-6 • • •

P. Chodowiec et al. [15] Virtex-6 • • • • •

A. Dandalis et al. [24] Virtex-6 • • •

A.J. Elbirt et al. [16] Virtex-6 •

V. Fischer et al. [17] FLEX 10KE-1 • •
ACEX 1K-1 • •

K. Gaj et al. [26] Virtex-6 • •

S. McMillan et al. [21] Virtex •

0.18µm

Amphion CS5220XV [32] VirtexE-8 • •
CS5230XV VirtexE-8 • • • •

Helion compact [33] Spartan IIE-6 • •
fast VirtexE-8 • • •

V. Fischer et al. [17] APEX 20KE-1 • •

0.15µm

Amphion CS5220XV[32] Virtex2-5 • •
CS5230XV Virtex2-5 • • • •

Helion fast [33] Virtex2-5 • • •

Among compact architectures, our design is one of the smallest and offers
richer functionality than cores from Amphion and Helion because it supports
both encryption and decryption. Both commercial cores are faster than ours;
however, they are implemented in a better, thus more expensive technology. The
implementation by S. McMillan et al. is also very compact and fast; however, it
benefits from the JBits application which is not likely to work in an embedded
environment.

We notice large differences among results for basic architecture. The imple-
mentation by P. Chodowiec et al. offers the most complete functionality and has
nearly identical size with the fast Helion core. The implementation by V. Fischer
et al. on FLEX and APEX also have similar parameters, but do not include key
schedule. The Amphion core CS5230XV is the smallest implementation in the
basic architecture, but does not support decryption.

Relating the results for our compact implementation to the implementations
in the basic architecture, we can see that the goal of reducing the required logic
resources by 75% was achieved. Moreover, the throughput of our design is higher
than the 25% of the best throughput reported for the basic architecture in the
same technology.

Table 3. Performance of all compared cores

Area Throughput clock cycles
CLB Slices Block RAMs [Mbps] per round

0.22µm

Our 222 3 166 4

P. Chodowiec et al. ∼1230 18 577 1

A. Dandalis et al. 5673 0 353 1

A.J. Elbirt et al. 3528 0 294.2 1

V. Fischer et al. FLEX 2530 LE1 24 EAB2 451 1
ACEX 2923 LE1 12 EAB2 212 1

K. Gaj et al. 2902 0 331.5 1

S. McMillan et al. 240 8 250 7

0.18µm

Amphion CS5220XV 421 4 294 4
CS5230XV 573 10 1061 1

V. Fischer et al. APEX 2493 LE1 50 ESB2 612 1

Helion compact 392 LUT1 3 223 4
fast 2259 LUT1 18 1001 1

0.15µm

Amphion CS5220XV 403 4 350 4
CS5230XV 573 10 1323 1

Helion fast 2259 LUT1 18 1408 1

1 2 LE ≈ 2 LUT ≈ 1 Slice 2 1 EAB = 2 ESB = 1 BRAM

We intentionally did not provide Throughput/Area ratios for any of the com-
pared designs as this measure can be very misleading when dedicated memories
are present in the design.

6 Conclusions

In this paper the feasibility of creating a very compact, low-cost FPGA imple-
mentation of the AES was examined. The proposed folded architecture achieves
good performance and occupies less area than previously reported designs. This
compact design was developed by thorough examination of each of the com-
ponents of the AES algorithm and matching them into the architecture of the
FPGA.

The demonstrated implementation fits in a very inexpensive, off-the-shelf
Xilinx Spartan II XC2S30 FPGA, which cost starts below $10 per unit. Only
50% of the logic resources available in this device were utilized, leaving enough
area for additional glue logic. This implementation can encrypt and decrypt
data streams up to 166 Mbps. The encryption speed, functionality, and cost
make this solution perfectly practical in the world of embedded systems and
wireless communication.

References

1. Fischer V. and Gramain F.: Resource sharing in a Rijndael implementation based
on a new MixColumn and InvMixColymn relation, submitted to Electronic Letters,
reference number: ELL 39 395, April 14, 2003

2. Järvinen K.U., Tommiska M.T., Skyttä J.O.: A fully pipelined memoryless 17.8
Gbps AES-128 encryptor, International Symposium on Field-Programmable Gate
Arrays (FPGA 2003), Monterey, CA, 2003

3. Standaert F.X., Rouvroy G., Quisquater J.J., Legat J.D., A methodology to im-
plement block ciphers in reconfigurable hardware and its application to fast and
compact AES RIJNDAEL, International Symposium on Field-Programmable Gate
Arrays (FPGA 2003), Monterey, CA, 2003

4. Verbauwhede I., Schaumont P., Kuo H.: Design and performance testing of a 2.29-
GB/s rijndael processor, IEEE Journal of Solid-State Circuits, Volume: 38 Issue:
3, March 2003

5. Daemen J. and Rijmen V.: The design of Rijndael: AES - The Advanced Encryption
Standard, Springer-Verlag, ISBN 3-540-42580-2, 2002

6. Lin T.F., Su C.P., Huang C.T., Wu C.W.: A high-throughput low-cost AES cipher
chip, IEEE Asia-Pacific Conference on ASIC, 2002

7. Lutz A.K., Treichler J., Gürkaynak F.K., Kaeslin H., Basler G., Erni A., Reich-
muth S., Rommens P., Oetiker S., Fichtner W., 2Gbit/s Hardware Realizations of
RIJNDAEL and SERPENT: A Comparative Analysis, Cryptographic Hardware
and Embedded Systems (CHES 2002), San Francisco Bay, CA, 2002

8. Mayer U., Oelsner C., Kohler T.: Evaluation of different rijndael implementations
for high end servers, IEEE International Symposium on Circuits and Systems (IS-
CAS 2002), 2002

9. Mitsuyama Y., Andales Z., Onoye T., Shirakawa I.: Burst mode: a new acceleration
mode for 128-bit block ciphers, IEEE Custom Integrated Circuits Conference, 2002

10. Morioka S. and Satoh A., An Optimized S-Box Circuit Architecture for Low Power
AES Design, Cryptographic Hardware and Embedded Systems (CHES 2002), San
Francisco Bay, CA, 2002

11. Morioka S. and Satoh A.: A 10 Gbps full-AES crypto design with a twisted-BDD
S-Box architecture, IEEE International Conference on Computer Design: VLSI in
Computers and Processors, 2002

12. Ravi S., Raghunathan A., Potlapally N.: Securing Wireless Data: System Archi-
tecture Challenges, Symposium on System Synthesis, 2002

13. Wolkerstorfer J., Oswald E., Lamberger M.: An ASIC Implementation of the AES
SBoxes, The Cryptographer’s Track at the RSA Conference, San Jose, CA, 2002

14. Chodowiec P., Khuon P., Gaj K.: Fast implementations of secret-key block ciphers
using mixed inner- and outer-round pipelining, International Symposium on Field-
Programmable Gate Arrays (FPGA 2001), Monterey, CA, 2001

15. Chodowiec P., Gaj K., Bellows P., Schott B.: Experimental Testing of the Gigabit
IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V
FPGA Accelerator Board, Information Security Conference (ISC 2001), Malaga,
Spain, 2001

16. Elbirt A.J., Yip W., Chetwynd B., Paar C.: An FPGA-based performance evalua-
tion of the AES block cipher candidate algorithm finalists, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Volume: 9 Issue: 4, August 2001

17. Fischer V. and Drutarovský M.: Two Methods of Rijndael Implementation in Re-
configurable Hardware, Cryptographic Hardware and Embedded Systems (CHES
2001), Paris, France, 2001

18. McLoone M. and McCanny J.V.: High Performance Single-Chip FPGA Rijn-
dael Algorithm Implementations, Cryptographic Hardware and Embedded Systems
(CHES 2001), Paris, France, 2001

19. McLoone M. and McCanny J.V.: Single-Chip FPGA Implementation of the Ad-
vanced Encryption Standard Algorithm, Field-Programmable Logic and Applica-
tions (FPL 2001), Belfast, Northern Ireland, UK, 2001

20. McLoone W., McCanny J.V.: Rijndael FPGA implementation utilizing look-up ta-
bles, IEEE Workshop on Signal Processing Systems, 2001

21. McMillan S. and Patterson C.: JBits Implementations of the Advanced Encryp-
tion Standard (Rijndael), Field-Programmable Logic and Applications (FPL 2001),
Belfast, Northern Ireland, UK, 2001

22. Rudra A., Dubey P.K., Jutla C.S., Kumar V., Rao J.R., Rohatgi P.: Efficient Rijn-
dael Encryption Implementation with Composite Field Arithmetic, Cryptographic
Hardware and Embedded Systems (CHES 2001), Paris, France, 2001

23. Satoh A., Morioka S., Takano K., Munetoh S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization, Theory and Application of Cryptology and
Information Security (ASIACRYPT 2001), Gold Coast, Australia, 2001

24. Dandalis A., Prasanna V.K., Rolim J.D.: A Comparative Study of Performance
of AES Final Candidates Using FPGAs, Cryptographic Hardware and Embedded
Systems Workshop (CHES 2000), Worcester, Massachusetts, 2000

25. Elbirt A.J., Yip W., Chetwynd B., Paar C.: An FPGA Implementation and Perfor-
mance Evaluation of the AES Block Cipher Candidate Algorithm Finalists, Third
Advanced Encryption Standard (AES3) Candidate Conference, New York, 2000

26. Gaj K. and Chodowiec P.: Comparison of the hardware performance of the AES
candidates using reconfigurable hardware, Third Advanced Encryption Standard
(AES3) Candidate Conference, New York, 2000

27. Gaj K. and Chodowiec P.: Hardware performance of the AES finalists-survey and
analysis results, Technical Report, George Mason University, 2000, available at
http://ece.gmu.edu/crypto/AES survey.pdf

28. Ichikawa T. and Matsui T.: Hardware Evaluation of the AES Finalists, Third Ad-
vanced Encryption Standard (AES3) Candidate Conference, New York, 2000

29. National Institute of Standards and Technology: FIPS 197: Advanced Encryption
Standard, November 2001

30. Daemen J. and Rijmen V.: AES Proposal: Rijndael,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

31. Rijmen V.: Efficient Implementation of the Rijndael S-box, available at:
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf

32. Amphion: http://www.amphion.com/
33. Helion: http://www.heliontech.com/
34. Xilinx, Inc.: Spartan II Data Sheet, available at: http://www.xilinx.com
35. Xilinx, Inc.: The New Spartan-II FPGA Family: Kiss Your ASIC Good-bye,

XCELL Journal, Q1, 2000, available at:
http://www.xilinx.com/xcell/xl35/xl35 5.pdf

